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Abstract

This study provides an inverse analysis to determine the thermal boundary behavior of a heated cylinder normal
to a laminar air stream. A ®nite-di�erence method is used to discretize the governing equations and then a linear

inverse model is constructed. The present approach is to rearrange the matrix forms of the governing di�erential
equations and to estimate the unknown conditions of the cylinder from the linear inverse model. The linear least-
squares error method is then adopted to ®nd the solutions of the unknown thermal boundary conditions such as

surface temperatures, local heat ¯ux, local Nusselt numbers, and even the unknown temperature of the hot wire
imbedded in the center of the cylinder. The results show that only few measuring points inside the cylinder are
needed to estimate the unknown quantities of the thermal boundary behavior even when measurement errors are

considered. From this study it is con®rmed that the proposed method is e�ective and applicable for the two-
dimensional inverse heat conduction problems. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recently, the inverse analysis has been widely

applied to many design and manufacturing problems
especially when direct measurements of surface con-

ditions are not possible. We may not obtain precise

results when the data is di�cult to measure. However,

by solving the inverse problem, we can obtain precise
results only with numerical computations and simple

instruments. All inverse problems are ill-posed, and a

small measurement error will induce a large estimated
error [1±5]. For example, it would be di�cult to

measure the temperatures or the heat ¯ux at the tool-

work interface in a machining operation, inside a com-

bustion chamber, at the outer surface of a re-entry ve-

hicle, and on the irregular surface. In all these cases,
the inverse analysis for the heat conduction and con-
vection problems can be successfully used to deal with

the determination of the crucial boundary thermal par-
ameters, such as heat transfer coe�cients, Nusselt
numbers, surface heat ¯ux, internal energy sources,
contact conductance and thermal properties.

The estimation for the boundary conditions in the
inverse heat conduction problems has received a
great attention in the recent years [6±8]. Various

methods, analytical or numerical, have been devel-
oped to solve the inverse heat conduction and con-
vection problems. Traditionally, the inverse problem

includes two phases: the process of analysis and the
process of optimization. In the analysis process, the
unknown conditions are assumed and then the

results of the problem are solved directly through
the numerical methods such as ®nite-di�erence

International Journal of Heat and Mass Transfer 43 (2000) 3991±4001

0017-9310/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(00 )00022-3

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +886-6-275-7575; fax: +886-

6-234-2081.

E-mail address: ckchen@mail.ncku.edu.tw (C.-K. Chen).



methods and ®nite-element methods. The solutions

from the above process are used to integrate with
data measured at the interior point of the solid.
Thus, a nonlinear problem is constructed for the

optimization process. In the optimization process,
an optimizer, such as the conjugated gradient
method, the steepest decent method and so on, is

used to guide the exploring points systematically to
search for a new set of guess conditions, which is
then substituted for the unknown conditions in the
analysis process.

This work uses a methodology of the reverse
matrix method [9,10] to solve the inverse problems.
This method rearranges the matrix forms of the

governing di�erential equations in order to represent
the unknown conditions explicitly. The linear least-
squares error method is then adopted to ®nd the

solutions for the unknown boundary conditions. Ad-
ditionally, no explicit functional form is assumed
for the boundary conditions where as in other

methods polynomial or series forms are employed.
Because of the complexity of the ¯ow around a

cylinder, many researchers in classical ¯uid mech-
anics have taken this problem as their research

topics. Coutanceau and Bouard [11,12] proposed the
experimental determination of the main features of
the steady and unsteady viscous ¯ow in the wake

of a circular cylinder in uniform translation. Lin
and Pepper [13] employed a numerical method to

investigate the separated ¯ow around a circular

cylinder.
In many circumstances, we must deal with the

problems concerning the heat transfer on the surface

of heated objects with the ¯ow around them. For
instance, the design of the heat exchanger, the ap-
plication of a hot wire anemometer and the thermal

analysis of the turbine blade subjected to a high
temperature ¯ow. In these cases, the in¯uence of
the temperature distribution on the surface of
objects should be carefully studied. Giedt [14] inves-

tigated experimentally the variation of point unit-
heat-transfer coe�cient around a cylinder normal to
an air stream at high Reynolds numbers. Jain and

Goel [15] presented a numerical study for unsteady
laminar forced convection from a circular cylinder
at low Reynolds numbers. Without discussing the

thermal behavior inside the cylinder, all of the pre-
viously mentioned literatures only discussed the
properties of the ¯ow around the cylinder and the

thermal behavior on the cylindrical surface. Tseng
[16] developed an algorithm called the direct sensi-
tivity coe�cient (DSC) method to deal with the
IHCP in an annular cylinder.

In this paper, a methodology to solve the inverse
problem about a heated cylinder normal to a laminar
air stream is presented. The unknown thermal bound-

ary conditions such as surface temperatures, local heat
¯ux, local Nusselt numbers, and even the unknown

Nomenclature

A constant matrix constructed from ther-
mal properties and space coordinates

B coe�cient matrix of C

C vector constructed from the unknown
boundary conditions

D matrix constructed from the functions of

the boundary conditions
E product of Aÿ1 and B

F error function

h�y� function of the unknown local heat
transfer coe�cients

k thermal conductivity
Nu�y� function of the unknown local Nusselt

numbers
q�y� function of the unknown local heat ¯ux
R reverse matrix

R radius of the cylinder
�r, y� cylindrical coordinate
T temperature

T�y� function of the unknown surface tem-
perature

T�r, y� temperature at each grid point �r, y�
T temperature matrix
U velocity

Greek symbols
Dr increment of radial coordinate

Dy increment of angular coordinate
o random error of the measurement
s bound of the quantity o

Subscripts
c cylinder
estimated estimated data

exact exact data
i index of radial coordinate
j index of angular coordinate

measured measured data
s surface
w hot wire

1 uniform air stream
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temperature of the hot wire will be obtained simul-
taneously through this proposed inverse method. In

contrast to the previous studies, the advantages of this
method are that no prior information is needed on the
functional form of the unknown quantities, that no in-

itial guesses are required and that the iterations in the
calculating process can be avoided. Furthermore, the
uniqueness of the solutions can easily be identi®ed.

2. Physical model

Consider the problem of a cylinder with surface tem-
perature, T�y� placed in a uniform air stream of tem-
perature, T1 and velocity, U1: According to the
symmetric characteristics, only a half domain of the

cylinder is considered, as shown in Fig. 1. The cylinder
is considered to be long enough so that the end e�ects
can be neglected and accordingly the problem is

assumed two-dimensional. For simpli®cation, the hot
wire imbedded in the center of the heated cylinder is
assumed to be a point source and is maintained at con-

stant temperature, Tw: In addition, the e�ect of tem-
perature variation on ¯uid properties is assumed
negligible and the ¯uid is incompressible.
The governing equation for the temperature ®eld of

the cylinder can be expressed as

@ 2T�r, y�
@r 2

� 1

r

@T�r, y�
@r

� 1

r 2
@ 2T�r, y�
@y 2

� 0

0RrR0:05 �m�

0RyRp �rad� �1�

where T�r, y� is the temperature at each grid point
�r, y�:
The appropriate boundary conditions are

@T�r, y�
@y

� 0 y � 0 �2�

@T�r, y�
@y

� 0 y � p �3�

T�0, y� � Tw r � 0 �4�

q�y� � ÿkc
@T�r, y�
@r

� h�y��T�0:05, y� ÿ T1
�

r � 0:05 m

�5�

where q�y� is the local heat ¯ux at the interface
between the cylinder and the ¯ow around the cylinder,
kc is the thermal conductivity of the cylinder, h�y� is
the local heat transfer coe�cient, and T1 is the tem-
perature of the uniform air stream.
The following constant parameters are used: the

radius of the cylinder R � 0:05 m, the thermal conduc-
tivity of the cylinder kc � 14 W/m K (nichrome), the
external air temperature T1 � 300 K, and the thermal

conductivity of the air stream k1 � 0:0263 W/m K.
Moreover, the hot wire temperature is Tw � 473 K,
which is used to heat the cylinder.

Fig. 1. The cylindrical coordinate system with measurement locations �.
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3. Numerical method

3.1. The direct problem

The ®nite-di�erence method is employed in the
analysis process. After discretization, the governing
equation, Eq. (1), and the boundary condition, Eq. (5),

can be expressed in the following recursive forms:

1

�Dr� 2
ÿ
Ti�1, j ÿ 2Ti, j � Tiÿ1, j

�� 1

ri

1

2Dr
ÿ
Ti�1, j

ÿ Tiÿ1, j
�� 1

r 2i

1

�Dy� 2
ÿ
Ti, j�1 ÿ 2Ti, j � Ti, jÿ1

�
� 0 �6�

qs, j � ÿkc
Ts, j ÿ Tsÿ1, j

Dr
� hs, j

ÿ
Ts, j ÿ T1

� �7�

where Dr � 0:005 m and Dy � p=18 are the increments

in the spatial coordinates, Ti, j is the temperature at
the grid �i, j), the subscript i is the ith grid along the r
coordinate, the subscript j is the jth grid along the y
coordinate, and the subscript s represents the grid on
the surface or boundary.
In regard to the treatment of the boundary con-

ditions, Eq. (7), the segments used on the boundary

are as many as there are nodes. Thus, the values of the
heat transfer coe�cients hs, j at di�erent nodes on the
boundary are treated as distinct.

Using the recursive forms an equivalent matrix
equation can be expressed as

AT � D �8�
where matrix A is a constant matrix, which is con-
structed from the thermal properties and the spatial
coordinates. The components of matrix T are the tem-

peratures at discretized points, and the components of
matrix D are the function of the boundary conditions.
The direct analysis is to determine the temperatures at

the nodes when all the boundary conditions and ther-
mal properties are known. The direct problem
expressed in Eq. (8) can then be solved using the

Gauss elimination method.
In this study, we use the temperature data obtained

from the direct problem to simulate the measured tem-
peratures of the interior points of the cylinder in the

inverse problem, and the boundary conditions required
to solve the direct problem are given in the work by
Yang et al. [17].

3.2. The inverse problem

For the inverse problem, matrix A can be con-
structed according to the known physical model and

numerical methods, and matrix T is composed of the
temperatures inside the cylinder measured by the ther-

mocouples. Decoupling the coe�cients of the com-
ponents of matrix D will transform the direct
formulation to the following inverse forms:

AT � BC �9�
where D � BC, B is the coe�cient matrix of C, and C

is the vector of the unknown boundary conditions,

such as the temperature of the hot wire, the Nusselt
numbers, heat ¯ux, temperatures and heat transfer
coe�cients of the discretized points on the cylindrical

surface.
Matrix C of the constructed inverse model, Eq. (9),

can then be solved by the linear least-squares error

method. Assuming that the estimated data of Cestimated

can be obtained by means of the given estimated tem-
perature Testimated, i.e.,

ATestimated � BCestimated �10�

Testimated � Aÿ1BCestimated

� ECestimated �11�
where E � Aÿ1B:
Comparing the estimated data Testimated with the

measured data Tmeasured, the error function F can be

represented as

F � �Testimated ÿ Tmeasured �T�Testimated ÿ Tmeasured � �12�
Substituting Eq. (11) into Eq. (12), we can express F as
the following matrix equation

F � �ECestimated ÿ Tmeasured �T�ECestimated ÿ Tmeasured �

� ÿCT
estimatedET ÿ TT

measured

��ECestimated ÿ Tmeasured �

� CT
estimatedETECestimated ÿ TT

measuredECestimated

ÿ CT
estimatedETTmeasured � TT

measuredTmeasured �13�

We can minimize F by di�erentiating F with respect to
Cestimated as

@F

@Cestimated

� 0 �14�

From Eq. (14), we obtain

ETECestimated � ETECestimated ÿ ETTmeasured ÿ ETTmeasured

� 0
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Fig. 2. The isothermal patterns inside the heated cylinder. (a) Re = 100, (b) Re = 200, (c) Re = 500.
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ETECestimated � ETTmeasured �15�
Thus, matrix Cestimated can then be solved as follows:

Cestimated � �ETE�ÿ1ETTmeasured �16�
where, �ETE�ÿ1ET is the reverse matrix of the inverse

problem and is denoted by R. The process derived
above is the linear least-squares error method [18].
Eq. (16) is formulated to represent the measurements

of all the discretized points in the problems. In most
cases, not all of the points need to be measured. The
realistic experimental approach is to measure only few

points in the problems. Therefore, only parts of matrix
R, T and vector C corresponding to the measuring
positions need to be constructed in order to estimate
the boundary conditions of the inverse problems. In

general, when a large portion of the matrices and vec-
tor are selected, i.e., when the number of transducers
or measuring points are large, the cost of computation

and experiment increase; the accuracy of the estimated
results increases as well.
Estimating matrix C, we can obtain simultaneously

the temperatures of the surface and the hot wire, the
local heat transfer coe�cients h�y�, the local Nusselt
numbers Nu�y� and the local heat ¯ux q�y� on the
cylindrical surface. In addition, a special feature of this

approach is that the iteration in the calculating process
can be avoided and the problem can be solved in a lin-
ear domain.

In the inverse problem, it is important to investigate
the stability of the estimation. Usually, a minor
measurement error makes the estimation away from

the exact solution in the ill-posed inverse problem. The

methods of future time and regularization have been

widely used to stabilize the results of the inverse esti-
mation [1,3,19±20]. Those methods impose the physical
condition onto the problem and increase the compu-

tational load in the estimated process. Consequently,
the stability of the problem can be increased, while the
computational load of the problem is also increased.
In the present research, it is possible to stabilize the

estimated results through a smooth process [21]. This
method computes a ``moving average'' of the esti-
mation. The result of data is the average of the N-

point around the current point. In this process, N
must be an odd number. Then, the e�ciency of the
estimation can be raised.

According to the above derivation, it is possible to
identify whether the solution is unique or not. The
method to identify the uniqueness of the solution is

based on the theory of linear algebra, which will be
shown in the following descriptions. If the rank of the
reverse matrix R is less than the number of undeter-
mined elements of the vector C, the number of

measurements needs to be increased. Furthermore, if
the rank of the reverse matrix R is equal to the num-
ber of undetermined elements of the vector C, the per-

pendicular distance from C to the column space of E

is checked. If the distance is vanished, then the sol-
ution becomes unique.

4. Results and discussion

This paper analyzes the heat conduction and convec-

Fig. 3. The hot wire temperature predicted by the proposed

inverse method. �s � 0, 1 and 3%).

Fig. 4. The distribution of temperature along the heated

cylindrical surface. �s � 0).
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Fig. 6. The distribution of local Nusselt number along the

heated cylindrical surface �s � 0).

Fig. 7. The distribution of local heat ¯ux along the heated

cylindrical surface. �s � 0).

Fig. 5. The distribution of temperature along the heated cylindrical surface. (a) s � 3%, Re = 100, (b) s � 3%, Re = 200, (c)

s � 3%, Re = 500.
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tion problems of the cylinder normal to an air stream.

Using the direct method mentioned previously com-

bined with the boundary conditions given by Yang et

al. [17], we study the Reynolds number e�ects on the
isothermal patterns, as shown in Fig. 2. Because the

hot wire is imbedded in the center of the cylinder, the

heat emission from the cylindrical surface is totally

caused by the forced convection of air stream. Results

show that the isothermal lines near the center of the

cylinder �r � 0� are closer than those which are far
from the center. Increasing the Reynolds number tends

to increase the temperature gradient. The distributions

of temperature on the cylindrical surface are strongly

in¯uenced by the presence of the stagnation point, the

separation point and the tail vortexes behind the cylin-

der. Because of the interaction between the inertia
force in the ¯ow ®eld, the viscous e�ect on the cylin-

drical surface and the inverse pressure gradient, the

¯ow separation occurs. Therefore, the behavior of heat

transfer will be greatly in¯uenced by the e�ects of the
separation.

For more accurate estimation of surface conditions,
the locations of the sensors are preferred closer to the
cylinder surface [10]. In the present example, eight

measurements are taken and the sensors are located at
the eight grid points �r � 0:04 m, y � 20n8, n � 1±8),
which are marked in Fig. 1 with symbols �. The tem-
perature data on the eight measurement locations are

obtained from Fig. 2, which is calculated by the direct
method, to simulate the measurements. The simulated
temperature measurements used in the inverse prob-

lems are considered to include measurement errors. In
other words, the random errors of simulated measure-
ments are added to the exact temperature computed

from the solution of the direct problem. Thus, the
measured temperature Tmeasured can be expressed as

Tmeasured � Texact � oTexact and oRjsj �17�

Fig. 8. The distribution of local Nusselt number along the heated cylindrical surface. (a) s � 3%, Re = 100, (b) s � 3%, Re =

200, (c) s � 3%, Re = 500.
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where Texact is the exact temperature, o is the random

error of the measurement, and s is the bound of o:
Fig. 3 shows the hot wire temperatures obtained by

the inverse matrix method for Re = 100, 200 and 500.

Results show that whether the measurement errors

�s � 0, 1 and 3%) are considered or not, the actual

hot wire temperature can be predicted precisely by the

proposed inverse method.

Fig. 4 shows the distributions of temperature T�y�
along the heated cylindrical surface when the measure-

ment error is not considered �s � 0). As y is increased,

the surface temperature increases from stagnation

point �y � 08� to the vicinity of the separation point,

reaching a maximum and then reducing gradually after

this point. Fig. 4 illustrates that the estimated results

have excellent approximations with the results of Yang

et al. [17] when measurement errors are not considered.

In Fig. 5, the distributions of temperature along the

heated cylindrical surface for Re � 100, 200 and 500

are presented. The temperature distributions obtained

in the present work are in good agreement with the

results of Yang et al. [17] even when the measurement

error s � 3% is considered.

Figs. 6 and 7 and show the distribution of the local

Nusselt numbers Nu�y� and local heat ¯ux q�y� along
the heated cylindrical surface without measurement

errors �s � 0). Figs. 6 and 7 illustrate that the esti-

mated results have excellent agreement with the results

of Yang et al. [17], when measurement errors are not

considered. The increase in the Reynolds number

increases the rate of heat transfer. The estimated local

Nusselt numbers and the local heat ¯ux show a mini-

mum at the separation point �y � 1208� because the

heat transfer is weak here. The position of minimum

values of Nu�y� and q�y� do not vary with Reynolds

number. In addition, the local Nusselt numbers and

the local heat ¯ux increase at the rear of the cylinder

�y � 1808� because of the mixing e�ect caused by ¯ow

vortexes.

The distributions of local Nusselt number Nu�y�

Fig. 9. The distribution of local heat ¯ux along the heated cylindrical surface. (a) s � 3%, Re = 100, (b) s � 3%, Re = 200, (c)

s � 3%, Re = 500.
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with s � 3% for Re � 100, 200 and 500 are shown in
Fig. 8. The minimum value of the local Nusselt num-

bers is located at the separation point �y � 1208). The
estimated local Nusselt number distributions are in
good agreement with the results of Yang et al. [17]. It

indicates that the proposed method can predict this
phenomenon e�ectively.
In Fig. 9, the distributions of local heat ¯ux q�y� are

plotted for various value of Re � 100, 200 and 500
with s � 3%: As expected, the minimum value of the
local heat ¯ux occurs at the separation point

�y � 1208). It also demonstrates that an increase of Re
enhances the e�ect of heat transfer over the heated
cylinder surface. There is a good agreement between
the estimated results and the results of Yang et al. [17];

thus the proposed method is e�ective for the inverse
heat conduction problems.

5. Conclusion

The proposed inverse method has been successfully
applied to estimate the surface thermal behavior of the

cylinder and the temperature of the hot wire imbedded
in the center of the cylinder. An inverse formulation is
reconstructed using the reverse matrix, which is derived

from the governing equation and boundary conditions.
The results can be solved without iteration by a linear
least-squares error method. The special feature of the

proposed method is that the uniqueness of the solution
can be identi®ed. The present study of the heated
cylinder normal to a laminar air stream has been used

to evaluate the accuracy and the robustness of the pro-
posed method. From the results, it appears that by
using the proposed method, without measurement
error, the exact solution can be found even with only

few measuring points. When measurement errors are
included, in order to enhance stability and accuracy,
temperature data requires more measuring points at lo-

cations inside the cylinder.
This proposed inverse method requires no prior in-

formation on the functional form of the unknown

quantities, no initial guesses, and no iterations in the
calculating process. Furthermore, the uniqueness of the
solutions can easily be identi®ed. This implies that the
present model o�ers a great deal of ¯exibility. Through

the proposed method, the surface and central thermal
behavior can be obtained merely by the inexpensive
measurement such as infrared measuring devices or

thermocouples. Thus, expensive sensors for the direct
measurement are not needed any more and the di�cul-
ties encountered in the measuring processes can be

avoided. Consequently, the results con®rm that the
proposed method is e�ective and e�cient for two-
dimensional inverse heat conduction problems.
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